If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k+3=-9
We move all terms to the left:
k^2-8k+3-(-9)=0
We add all the numbers together, and all the variables
k^2-8k+12=0
a = 1; b = -8; c = +12;
Δ = b2-4ac
Δ = -82-4·1·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4}{2*1}=\frac{4}{2} =2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4}{2*1}=\frac{12}{2} =6 $
| 150=a*0.008 | | 2(g+6)+-7=-17 | | -9+3c=14+8c | | 7/10x=-3/5 | | 0.8y+30=-24 | | 16x^2-60x=0 | | -1/2n+-3/4n=-7/16 | | -6x4=11 | | 6x+58=9x−1 | | -3h=-18 | | 9/10y-2=-19/20y+3 | | 2+9n=4n+2 | | (5r)(-2)r5=-3 | | 3(3y-7)+4y=31 | | 61-x=159 | | 3.64−0.3(x+0.3)=x+0.2(0.6x−3.55)= | | 14s-45=s+59 | | 14s-45=s=59 | | 0=-2i(8-2i) | | 3j=-9 | | s+59=14s–45 | | 5n^2=-12 | | 14s–45=s+59 | | t-9.25=5,45 | | 3/2n+9/10=-1/5n-23/10 | | 2/5(7/8-6x)-5/8=3/8 | | 13v-1=4v+44 | | (6p-12/p+3)+(5/p-2)=6 | | 5=(-4x+7) | | 8(0)-2+5y+8=180 | | -1/2n+3/4=-7/16 | | -3z+-15=18 |